Tuesday, January 14, 2014

Word Ladder (Java)

Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
Solution:
Classical BFS question, with same formate with binary tree level traversal, different point is
how to check valid children(neighbours) and put them into qToPush(next_level queue in BT level traversal)
public class Solution {
public int ladderLength(String start, String end, HashSet<String> dict) {
if (start==null||end==null||dict==null||start.length()==0||start.length()!=end.length()){
return 0;
}
Queue<String> qToOffer=new LinkedList<String>();
Queue<String> qToPoll=new LinkedList<String>();
int i=1;
qToPoll.offer(start);
while (!qToPoll.isEmpty()||!qToOffer.isEmpty()){
while(!qToPoll.isEmpty()){
String current=qToPoll.poll();
char[] sChars=current.toCharArray();
for (int j=0; j<sChars.length; j++){
char original=sChars[j];
for (char c='a'; c<='z'; c++){
if (c==sChars[j]){
continue;
}
sChars[j]=c;
String tempStr=String.copyValueOf(sChars);
if (tempStr.equals(end)){
return i+1;
}
if (dict.contains(tempStr)){
qToOffer.offer(tempStr);
// if not remove tempStr, a loop may happened
dict.remove(tempStr);
}
}
// don't forget to recover the sChars to orginal sChars
sChars[j]=original;
}
}
// level++
i++;
Queue<String> tempQ=qToPoll;
qToPoll=qToOffer;
qToOffer=tempQ;
}
return 0;
}
}

No comments:

Post a Comment