Monday, January 13, 2014

Max Points on a Line(Java)

Given n points on a 2D plane,
find the maximum number of points that lie on the same straight line.
/**
* Definition for a point.
* class Point {
* int x;
* int y;
* Point() { x = 0; y = 0; }
* Point(int a, int b) { x = a; y = b; }
*
*
*
* }
*/
Solution:
remember that a line can be represented by y=kx+d, if p1 and p2 are in same line, then y1=x1k+d,
y2=kx2+d, so y2-y1=kx2-kx1, so k=(y2-y1)/(x2-x1), then we can apply this formular to check
if two points are in same line, however how to handle the duplicate points problem?
So instead to calculate the line with maximum points , we should calculate
longest line(maximum ponts) through same point,
public class Solution {
public int maxPoints(Point[] points) {
if (points==null||points.length==0){
return 0;
}
HashMap<Double, Integer> map=new HashMap<Double, Integer>();;
int max=1;
for(int i=0; i<points.length; i++){
// shared point changed, map should be cleared and server the new point
map.clear();
// maybe all points contained in the list are same points,and same points' k is
// represented by Integer.MIN_VALUE
map.put((double)Integer.MIN_VALUE, 1);
int dup=0;
for(int j=i+1; j<points.length; j++){
if (points[j].x==points[i].x&&points[j].y==points[i].y){
dup++;
continue;
}
// look 0.0+(double)(points[j].y-points[i].y)/(double)(points[j].x-points[i].x)
// because (double)0/-1 is -0.0, so we should use 0.0+-0.0=0.0 to solve 0.0 !=-0.0
// problem
// if the line through two points are parallel to y coordinator, then K(slop) is
// Integer.MAX_VALUE
double key=points[j].x-points[i].x==0?Integer.MAX_VALUE:0.0+(double)(points[j].y-points[i].y)/(double)(points[j].x-points[i].x);
if (map.containsKey(key)){
map.put(key, map.get(key)+1);
}
else{
map.put(key, 2);
}
}
for (int temp: map.values()){
// duplicate may exist
if (temp+dup>max){
max=temp+dup;
}
}
}
return max;
}
}

No comments:

Post a Comment