Monday, January 13, 2014

4 Sum (Java)

Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target?
Find all unique quadruplets in the array which gives the sum of target.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
Solution: adopt 3 sum solution, and an extra for loop, because 3 sum soltuon is O(n^2), so this
solution is O(n^3)
"Don't forget skip duplicate"
public class Solution {
public ArrayList<ArrayList<Integer>> fourSum(int[] num, int target) {
ArrayList<ArrayList<Integer>> result=new ArrayList<ArrayList<Integer>>();
if (num.length<4){
return result;
}
Arrays.sort(num);
for (int i=0; i<num.length; i++){
// skip duplicate
if (i>0&& num[i]==num[i-1]){
continue;
}
for (int j=i+1; j<num.length; j++){
// skip duplicate
if (j>i+1 &&num[j]==num[j-1]){
continue;
}
int start=j+1;
int end=num.length-1;
while(start<end){
int currentValue=num[i]+num[j]+num[start]+num[end];
if(currentValue==target){
ArrayList<Integer> current=new ArrayList<Integer>();
current.add(num[i]);
current.add(num[j]);
current.add(num[start]);
current.add(num[end]);
result.add(current);
// skip duplicate
do {start++;} while(start<end&&num[start]==num[start-1]);
do {end--;}while(start<end&&num[end]==num[end+1]);
}
else if(currentValue>target){
end--;
}
else{
start++;
}
}
}
}
return result;
}
}
view raw 4 Sum.java hosted with ❤ by GitHub

No comments:

Post a Comment