LeetCode
Maximal Rectangle
Total Accepted: 2599 Total Submissions: 12591
Given a 2D binary matrix filled with 0's and 1's,
find the largest rectangle containing all ones and
return its area.
Similar question with largest rectangle in histogram but
more tough.
we can apply a helper table to convert matrix to another
int[][] helper with calculate the current height for 1 at each
column until current row.
Such as
char[][] matrix -> int[][] helper
0,0,0,1,0 0,0,0,1,0
0,1,1,0,1 0,1,1,0,1
0,1,1,1,0 0,2,2,1,0
0,0,1,0,1 0,0,3, 0,1
then we can apply the method used in largest rectangle in
histogram to get max area which used current row as bottom
then keep updating max area.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/*Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.*/ | |
public class MaximalRectangle { | |
public int maximalRectangle(char[][] matrix) { | |
if (matrix==null ||matrix.length==0){ | |
return 0; | |
} | |
int[][] heights=new int[matrix.length][matrix[0].length]; | |
// build heights table, once we have heights table, at each row, we can use | |
// method which used in question of Largest Rectangle in Histogram to calculate | |
// max area at until this row,. | |
for (int row=0; row<matrix.length; row++){ | |
for (int col=0; col<matrix[0].length; col++){ | |
if (row==0){ | |
heights[row][col]=matrix[row][col]=='0'?0:1; | |
} | |
else{ | |
heights[row][col]=matrix[row][col]=='0'?0:heights[row-1][col]+1; | |
} | |
} | |
} | |
int max=0; | |
for (int row=0; row<heights.length; row++){ | |
// update max with maxArea of each row | |
max=Math.max(max, maxArea(heights[row])); | |
} | |
return max; | |
} | |
// calculate maxArea for each row | |
private int maxArea(int[] heights){ | |
if (heights==null||heights.length==0){ | |
return 0; | |
} | |
Stack<Integer> stack=new Stack<Integer>(); | |
int max=0; | |
int i=0; | |
while(i<heights.length){ | |
if (stack.isEmpty()||heights[stack.peek()]<=heights[i]){ | |
stack.push(i); | |
i++; | |
} | |
else{ | |
int height=heights[stack.pop()]; | |
int width=stack.isEmpty()?i:i-stack.peek()-1; | |
max=Math.max(max, height*width); | |
} | |
} | |
while(!stack.isEmpty()){ | |
int height=heights[stack.pop()]; | |
int width=stack.isEmpty()?i:i-stack.peek()-1; | |
max=Math.max(max, height*width); | |
} | |
return max; | |
} | |
} |
No comments:
Post a Comment