Tuesday, May 27, 2014

Path Sum (Java and Python)

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:
Given the below binary tree and sum = 22,
              5
             / \
            4   8
           /   / \
          11  13  4
         /  \      \
        7    2      1
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:
Given the below binary tree and sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.
Definition for a binary tree node
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param root, a tree node
# @param sum, an integer
# @return a boolean
def hasPathSum(self, root, sum):
if root==None:
return False
if root.val==sum and root.left==None and root.right==None:
return True
return self.hasPathSum(root.left, sum-root.val)or self.hasPathSum(root.right, sum-root.val)
view raw PathSum.py hosted with ❤ by GitHub
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:
Given the below binary tree and sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if (root==null){
return false;
}
if (root.val==sum && root.left==null && root.right==null){
return true;
}
return hasPathSum(root.left, sum-root.val)||hasPathSum(root.right, sum-root.val);
}
}
view raw PathSum.java hosted with ❤ by GitHub

No comments:

Post a Comment